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Abstract The mathematical properties of h e  generating function S ( x )  for the number sn of 
directed coIm"onvex lattice animals on a squwe lattice with a given directed-site perimeter 
n xe investigated. In  particular, it is shown that S ( x )  can be expressed exactly in terms of 
algebraic hypergeometric functions. A detailed investigation of the asymptotic behaviour of s. 
as n - m is carried out by applying the Darboux method to the hypergeometric formula far 
S(x) .  It is also demonsmted that sn satisfies a four-term recurrence relation. Finally, it is noted 
that the techniques used to analyse the lattice animal generating function S ( x )  can tx applied 
to any other generating function which satisfies a cubic algebraic equation. 

1. Introduction 

The enumeration problem for directed lattice animals, which was first investigated some 
time ago (Redner and Yang 1982, Dhar et al 1982, Day and Lubensky 1982, Stanley et al 
1982), has continued to give rise to some extremely interesting and often surprising results. 
In particular, it was shown (Dhar 1982) that the directed-site animal problem on square 
and triangular lattices is equivalent to the hard-square lattice-gas model with anisotropic 
next-nearest-neighbour interactions at the disorder point (Baxter 1980, Baxter and Tsang 
1980, Baxter and Pearce 1982). This connection was then used by Dhar (1982) to derive 
exact formulae for the generating functions of directed-site animals on square and triangular 
lattices. In a similar manner, Dhar (1983) also obtained further exact results for a directed- 
site animal problem on a three-dimensional simple-cubic lattice (see Joyce 1989). More 
generally, it  has been established by Cardy (1982) that the critical exponents of directed 
animals on a D-dimensional lattice are related to those for the Lee-Yang edge singularity 
in the (D - 1)-dimensional Ising model (Fisher 1978). The application of the well known 
expression for the free energy of the one-dimensional king model to this result enabled 
Cardy to determine the exact values for the two-dimensional critical exponents of directed 
animals. There has also been some interest in the enumeration problem for directed and 
partially directed compact lattice animals in two dimensions (Bhat e t a /  1986, 1987, 1988, 
F'rivman and Forgacs 1987). 

The main aim in this paper is to analyse the recent results of Delest and Dulucq (1993) on 
the enumeration of directed column-convex (DCC) lattice animals with a given site perimeter 
on a two-dimensional square lattice. We shall begin by giving a precise definition of a DCC 
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lattice animal. A lattice aninlal is a set A of lattice sites such that any pair of sites belonging 
to A can be connected by at least one continuous path consisting of nearest-neighbour (NN) 
edges which only join sites of A. We define a directed lattice animal do to be one that 
has a source point (0,O) with the property that all other sites in the animal can be reached 
from (0,O) by at least one path which is made up entirely of NN steps in either the +x 
or +y direction and only passes through sites in AD. A DCC animal Amc has the further 
property that every vertical column of sites in the animal must form an unbroken chain of 
sites linked by single NN edges. Finally, we define the sire perimeter of a lattice animal 
Aocc to be the number of sites outside A m  which can be reached from the boundary sites 
of the animal by making a single NN step in either the +x or +y direction. 

Delest and Dulucq (1993) have proved that the numbers, of DCC lattice animals on the 
square lattice with a site perimeter n has a generating function 

G S Joyce and A J Gunman 

m 

S ( x )  = cs.x" = xz + 3x3 + 12x4 + 54x5 + 260x6 + 1310~' + . . . (1.1) 
n=O 

which is a solution of the algebraic equation 

S3 + 3(x - l)S2 + ( X  - 1)(3x - 1)s + x 2 ( x  - 1) = 0. (1.2) 

They found that this result can be simplified by introducing the modified generating function 

T ( x ) = - l + x + S ( x )  (1.3) 

which satisfies the reduced equation 

T3-2 (1 -x )T- ( l -x )  =o, (1.4) 

It is also convenient to express (1.4) in the alternative form 

(2) y3 -,, - 1 = o 

where 

y = 2 T  

z = $(I  - x y .  

In section 2 of this paper we shall prove that all the branches of the algebraic function 
y = y(z) are solutions of the standard hypergeometric differential equation of second order 
(Erdtlyi et al 1953). This basic result is then used to determine the analytic properties of 
the function y(z). In section 3, a four-term recurrence relation for s, is derived and an 
analytic continuation formula for the generating function S ( x )  is obtained which is valid 
in the neighbourhood of the dominant singularity x, = 5. Next, the detailed asymptotic 
behaviour of sa as n --f 00 is investigated by applying the Darboux method (see Wong 1989) 
to the singular part of this analytic continuation. Finally, we give an algebraic closed-form 
expression for the generating function S(x). 
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2. Analytic properties of the algebraic function y (z) 

In order to determine the properties of y(z), we first apply the transformations z = -27v2/4 
and y = -u - [Y  to (1.5). This procedure gives 

Y(u)  [I + Y(v)2] = U. (2.1) 

The relation (2.1) occurs in the mean-field theory of a fenomagnet as the dimensionless 
scaling-law form for the critical equation of state above the critical temperature T, (Widom 
1965, Domb and Hunter 1965, Griffiths 1967, Fisher 1967). Joyce (1972) has shown that 
(2.1) is also associated with the critical equation of state for the spherical model on a D- 
dimensional lattice with D > 4. In the same work, the Lagrange inversion formula (see 
Whittaker and Watson 1965) was used to express the physically acceptable solution Y+(v) 
of (2.1) in terms of the hypergeometric function. From these results it is reasonable to 
suppose that any solution of equation (1.5) will also satisfy the hypergeometric differential 
equation (ErdClyi et al 1953) 

L[yl E ( ~ ( 1  - z)D: + [C  - (a + b + l)zlD, - U ~ } Y ( Z )  = 0 (2.2) 

2 3 where Dz = d/dz; a = f. b = 

algebraic manipulations this procedure yields 

and c = 5. 
We can prove this conjecture by differentiating (1.5) twice with respect to z .  After some 

Y'W = jY ( 9 - 4 z y y  

y"(z) = $y5 (27 - 8 z y 2 )  (9 - ~ z Y ' ) - ~ .  

(2.3) 

(2.4) 

If formulae (2.3) and (2.4) are substituted into (2.2) we find that 

U Y l  = 1 6 2 ~  [ (2) y3 - Y - 11 [ (2) y3 - y + I] (9 - ~ Z Y ~ ) - ~ .  (2.5) 

The application of (1.5) to this expression gives L[y] = 0 and the conjecture is verified. 

the solutions of (1.5) can all be written as 
It follows from the hypergeometric equation (2.2) that in the neighbourhood of z = 0 

~ ( Z ) = A ~ Z - ~ F ( - ~ , ~ ; ~ ; Z ) + B O F ( ~ . ~ ;  z;z)  (2.6) 

where A0 and BO are constants. We can determine the possible values of the constants A0 

and Bo by first expanding (2.6) in the form 

y(z) = Aoz-f + BOZO + O(zf). (2.7) 

If we now substitute (2.7) in (1.5) and equate the coefficients of z-i  and zo to zero we 
3.A find that [A0 = & T ,  BO = i] and [A0 = 0, Bo = -1). In this manner we see that the 

solutions of (1.5) have the representations 
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where jzI < 1. 

z = 1. In this case we can use the linear superposition (Erd6lyi et al 1953) 

G S Joyce and A J Guttman 

A similar analysis can be carried out in the neighbourhood of the regular singular point 

(2.10) 

where A I  and E1 are constants. It is found that the constants A ,  and E1 can take the the 
values {AI = 3. B I  = 0) and [AI = -$, B1 = *TI. From these results we obtain the 
following analytic continuation formulae for the three branches of y(z):  

y ( z )  = A l z - i F  (-z, 1 1 . 1 .  ?. 1 - z - ’ )  + Blz-f (2-l - 1)t F (i 2 .  1 -2-l)  
3 ‘  6 ’  2’  

43 

y+(z )  = 3z-fF (-1 6 ’ 3 ’  1. I. 2’ 1 - -1 (2.1 1) 

The hypergeometric series in equations (2.1 1)-(2.13) are absolutely convergent provided 
that Re(z) 2 4. 

It is also possible to investigate the behaviour of the algebraic function y(z) in the 
neighbourhood of the point z = 03 by using the linear superposition (ErdClyi et al 1953) 

where A2 and BZ are constants. We find that $e allowed values for these constants are 

obtain the further analytic continuation formulae 
(A2 = 3(2)-5, E2 = 3(2)-i) and (A2 = 3(2)-~e*”’ l3,  = 3(2)-‘ Hence, we 

where IzI 2 1 .  

formula to the cubic equation (1.5). In this manner we obtain 
Finally, we derive closed-form expressions for y(z) by applying the standard Cardan 

(2.18) 

When 0 < z < 1, the results (2.18)-(2.20) are rather inconvenient to use because they 
express the real-valued functions y i (z )  and yo(z) in terms of cube roots of complex 
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numbers which are, in general, irreducible. It should be noted that the hypergeometric 
representations for y + ( z )  and yo(z) given earlier do not suffer from this disadvantage. A 
comparison between (2.15)-(2.17) and (2.18)-(2.20), respectively, leads to the well known 
identities 

(2.21) 

F ( i  , 3 '  2. 4. 3 '  w) = (4/w)i [i - f (1  - w)k]' (2.22) 

where IwI < 1. Further relations can be obtained by making comparisons with the other 
hypergeometric formulae for y*(z) and yo(z). 

3. Generating function for DCC animals with given site perimeter 

In this section we shall use the properties of the algebraic function y ( z )  to investigate the 
enumeration problem for DCC lattice animals. 

3.1. Basic results 

We follow the work of Delest and Dulucq (1993) and consider the function 

T ( x )  = -1 t x + S(x)  (3.1) 

where 

is the generating function for the number s,, of DCC lattice animals which have a directed- 
site perimeter n .  It is readily seen from (1.6) and (1.7) that a differential equation for T ( x )  
can be derived from the hypergeometric equation (2.2) with a = 4, b = 5 and c = 4 by 
maliing the changes of variable y H 2T and z w g ( 1  - x)-'. Hence, we obtain 

[(5-32x)(1 -x)'D:-\6(1 - X ) ~ D ~ - ~ ] T ( X ) = O  (3.3) 

where D, = d/&. This differential equation has regular singular points at x = 1, x, = 2 
and x = 00. If we solve (3.3) as a Maclaurin series about the ordinary point x = 0 we find 
that the coefficient s, in  the expansion (3.2) must satisfy the four-term recurrence relation 

5n(n + l)s,+, - Zn(21n - 1 3 ) ~ ~  + (3n - 5)(23n - 2O)s.-1 - 16(n - 2)(2n - 5)s,-z = 0 

(3.4) 

where n > 3, with the initial conditions sz = 1, s3 = 3 and sq = 12. (The recurrence relation 
is not valid for n = 1.2,3 because the coefficient of x m  in the power series expansion for 
T ( x )  is only equal to s, for m 2 2.) 

The behaviour of S(x) in  the neighbourhood of the dominant singularity at x, = 5 
can be established by applying the transformations y H 2T and z H z ( 1  - x)- '  to the 
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analytic continuation formula (2.12) for the branch y-(z). This procedure gives the basic 
result 

G S Joyce and A J Guttnlnn 

S(x) = (1 - Q - ( T ) '  1-2 j [ F ( -1 6 ,  I. 3 ,  2 ,  1. 7) -5t32r +- -32r)fF ( f ,  2; 9; *)I. 
(3.5) 

It is also useful to express (35) in the alternative simplified form 

S(x) = $1 ( E )  -I- €4 h(f) (3.6) 

where 

~ ~ ( E ) = S ( X ~ ) ~ ( I + ~ ) - ~ ( I + ~ ) ~ F ( - ~ , ~ ; ~ : - E ) ]  (3.7) 

$ z ( E )  = - ~ ( l  .6 + E ) !  F (4,;; 4; -6)  

E = 5 ( 1  - ;) 
(3.8) 

(3.9) 

and S(xJ = $ 
3.2. Asymptotic behaviour of s, as n -t 00 

We shall now determine the asymptotic behaviour of s, as n --t 00 by applying the method 
of Darboux (see Wong 1989) to (3.6). In the first stage of the analysis, the function 1LZ(6) 
in the singular part of (3.6) is expanded as a Maclaurin series in the form 

where I C [  6 1, 

' (9 aF2 (-k, -? 1 - k .  -4: - k ,  2 - k; 1) f k =  (%)kk!  

(3.10) 

(3.1 1) 

and &(al, ax, u3; bl, bz; z) denotes a generalized hypergeometric function (Erd6lyi et al 
1953). It can be shown from the differential equation (3.3) that the coefficient fk also 
satisfies the recurrence relation 

9(k + 1)(2k + 3)fX+l - 2(3k + 2)(6k - 1)fk  + 9(k - 1)(2k - 1)fX-1 = 0 

where k 2 0, with the initial conditions fo 
k is given by the asymptotic formula 

(3.12) 

1 and f-l = 0. The behaviour of fk for large 

as k CO. 

approximant as 
Next, we substitute (3.10) in the singular part of (3.6) and define the Mth Darboux 

(3.14) 
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If the binomial theorem is used to expand S [ M , x ]  as a Maclauin series, we obtain the 
asymptotic representation 

S" - S"[MI (3.15) 

as n + CO, where M =0 ,1 ,2 , .  .., and 

(3.16) 

We can prove, using the ratio test and (3.13). that the infinite sequence of approximants 
{ s J M ] ;  M = 0, 1,2, .  . .) converges to a finite limit s.[m]. It should be stressed, however, 
that this unusual feature does not imply that s, = s,[co]! For example, when n = 12 we 
find that 

SIZ[CO] 6 141 763.994018.. . 

while the exact value is s12 = 6 141 764. The most accurate approximation for  SI^ is given 
by 

s12[18] =6141763.998159.. 

If the standard asymptotic expansion for the binomial coefficient (Luke 1969) is 
substituted in the approximant (3.16) with M = CO we obtain 

(3.17) 

as n + CO, where 
m 

(3.18) k I C-k- i )  
g m  = (& h (&) [ (m - k ) ! l -  Bm-k (0) 

k=O 

and B,?(x) denotes a generalized Bernoulli polynomial. 
coefficients g,,, are 

The values of the first few 

649 813025 3181261895 
go = = $2 = 7558Tli g3 = -440798423O4. 

One would expect the asymptotic expansion in (3.17) to be a divergent series. 

3.3. Closed$orm expressions for S ( x )  

We have seen that the basic formula (3.5) is particularly useful for investigating the 
asymptotic behaviour of s, as n + CO. However, it is also possible, at least in principle, 
to expand the hypergeometric functions in (3.5) as Maclaurin series about x = 0. In this 
manner, we can also generate, from (3 .3 ,  the exact values of {s,; n = 0, 1,2, . . . ). 

In practice the direct expansion of (3.5) about x = 0 is most easily carried out by first 
applying the relations (Oberhettinger 1965) 
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Hence, we obtain the algebraic closed-form expression 

S(x)=(I  - x ) - f ( l - x ) f  [ [ A + ( x ) + A - ( x ) I - i ~ [ A + ( x ) - A - ( x ) I }  (3.21) 

where 

C S Joyce and A J Gutimnn 

The formula (3.21) represents the generating function series (3.2) for 1x1 < x ,  and also gives 
the analytic continuation of the series throughout the x plane, provided that a cut is made 
along the positive real axis from x = x, to x = 00. An alternative procedure for deriving 
(3.21) is to apply the transformations y- H 2T and z H $(l - x ) - l  to the formula (2.19) 
for y- (z ) .  This procedure yields 

S ( x ) = ( l  - x ) + ( l - x ) - [  4 e+"'pA + ( x )  + e-"'pA-(~)] (3.23) 

which is equivalent to (3.21). 
Next, we write (3.22) in the form 

and note the identity 

I 

(i * ;&)' = t [(I +&) & 5 (3 -&)I 

(3.24) 

(3.25) 

From these results we can derive the expansion 

s[A+(x) + A - ( x ) ]  - g [ A + ( x )  - A-(x)] = 1 - 2.1 3 9  - 'oxz - U x 3  SI - 3 n o x 4  243 
I 

42Smx5 1 8 4 5 8 9 2 ~ 6  z7n8780x i  19683 - ,  , , (3.26) 

where 1x1 < xC. Finally, the substitution of (3.26) into (3.21) leads to agreement \*,ith the 
generating function series (1 .I). 

-- 
729 6561 

4. Concluding remarks 

We have seen that the analysis of the algebraic function y ( z )  given in section 2 enables us 
to investigate the detailed properties of the generating function S ( x ) .  It should, however, be 
pointed out that the function p(z) can also be used to study the properties of any function 
Q(w)  which satisfies a general cubic equation of the form 

n3 4- 3ai(OJ)d -t 3Uz(U)a -k a3(w) = 0 (4.1) 

where (uj(w); j = 1,2,3) are functions of the independent variable w. 

This procedure yields the reduced equation 
To establish this connection, we first make the substitution Q = 0 -a,@) in (4.1). 

0 3  + p(0 )O + q ( 0 )  = 0 (4.2) 
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(4.3) 

If the further transformations 

(4.5) 

(4.6) 
are now applied to (4.2) we obtain the required equation (1.5) for the algebraic function 
Y k ) .  
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